

Invenio-Base

[image: _images/invenio-base.svg]
 [https://github.com/inveniosoftware/invenio-base/blob/master/LICENSE][image: _images/invenio-base1.svg]
 [https://travis-ci.org/inveniosoftware/invenio-base][image: _images/invenio-base2.svg]
 [https://coveralls.io/r/inveniosoftware/invenio-base][image: _images/invenio-base3.svg]
 [https://pypi.org/pypi/invenio-base]Base package for building Invenio application factories.

Further documentation is available on https://invenio-base.readthedocs.io/

User’s Guide

This part of the documentation will show you how to get started in using
Invenio-Base.

	Installation

	Usage
	Quickstart

	The inveniomanage command

API Reference

If you are looking for information on a specific function, class or method,
this part of the documentation is for you.

	API Docs
	Application and CLI factory

	WSGI factory

	Signals

Additional Notes

Notes on how to contribute, legal information and changes are here for the
interested.

	Contributing

	Changes

	License

	Contributors

Installation

Invenio-Base is on PyPI so all you need is:

$ pip install invenio-base

Usage

Invenio application loader.

Quickstart

Invenio-Base is taking advantage of advanced patterns for building Flask
application. It assumes you already have understanding of
patterns for Flask [http://flask.pocoo.org/docs/dev/patterns/].

Dependencies

First we need to install and import dependencies:

$ mkvirtualenv example
(example)$ pip install invenio-base

Now you can create new file app.py with following imports:

import os
import sys

from invenio_base.app import create_app_factory, create_cli
from invenio_base.wsgi import create_wsgi_factory

Configuration

Tell the application factory how to load configuration by creating
config_loader function that accepts an application instance:

class Config(object):
 """Example configuration."""

 DEBUG = True
 SECRET_KEY = 'CHANGE_ME'

def config_loader(app, **kwargs):
 """Custom config loader."""
 app.config.from_object(Config)
 app.config.update(**kwargs)

The recommended way is to use Invenio-Config [https://invenio-config.readthedocs.io/] that provides a default
configuration loader invenio_config.utils.create_config_loader() [https://invenio-config.readthedocs.io/en/latest/api.html#invenio_config.utils.create_config_loader] which is
sufficient for most cases:

from invenio_config import create_config_loader
config_loader = create_config_loader(config=Config, env_prefix='APP')

In the next step you should set an absolute path for the instance folder in
order to load configuration files and other data from deployment specific
location. The instance folder is also perfect place for dropping static files
if you do not serve them from CDN:

env_prefix = 'APP'

instance_path = os.getenv(env_prefix + '_INSTANCE_PATH') or \
 os.path.join(sys.prefix, 'var', 'example-instance')
"""Instance path for Invenio.

Defaults to ``<env_prefix>_INSTANCE_PATH`` or if environment variable is not
set ``<sys.prefix>/var/<app_name>-instance``.
"""

static_folder = os.getenv(env_prefix + '_STATIC_FOLDER') or \
 os.path.join(instance_path, 'static')
"""Static folder path.

Defaults to ``<env_prefix>_STATIC_FOLDER`` or if environment variable is not
set ``<sys.prefix>/var/<app_name>-instance/static``.
"""

In our example the variables are read from environment variables first with the
purpose that they can be easily changed without modifying code for various
deployment usecases.

Combining Applications

It is highly recommendended to separate Invenio UI and REST applications then
different exception handlers, URL converters and session management can be
installed on each application instance. You can even install your own WSGI
application side by side with Invenio ones.

Invenio packages provide apps (extensions), blueprints, and URL converters via
entry points invenio_base.[api_]<apps,blueprints,converters>. You can
specify multiple entry point groups for each application factory (e.g.
myservice.blueprints):

create_api = create_app_factory(
 'example',
 config_loader=config_loader,
 blueprint_entry_points=['invenio_base.api_blueprints'],
 extension_entry_points=['invenio_base.api_apps'],
 converter_entry_points=['invenio_base.api_converters'],
 instance_path=instance_path,
)

create_app = create_app_factory(
 'example',
 config_loader=config_loader,
 blueprint_entry_points=['invenio_base.blueprints'],
 extension_entry_points=['invenio_base.apps'],
 converter_entry_points=['invenio_base.converters'],
 wsgi_factory=create_wsgi_factory({'/api': create_api}),
 instance_path=instance_path,
 static_folder=static_folder,
)

You provide instances of your own apps, blueprints, or URL converters directly
to the factory:

from flask import Blueprint

blueprint = Blueprint('example', __name__)

@blueprint.route('/')
def index():
 return 'Hello from Example application.'

 create_app = create_app_factory(
 'example',
 blueprints=[blueprint],
 # other parameters as shown in previous example
)

Running

To run you application you need to first instantiate the application object:

app = application = create_app()
"""The application object."""

Then you need to tell the ``flask`` command where is your file located
by setting environment variable FLASK_APP=app.py:

$ export FLASK_APP=app.py
$ flask run

If you prefer to make your own executable script then you can use following
pattern:

from invenio_base.app import create_cli

cli = create_cli(create_app=create_app)

if __name__ == '__main__':
 cli()

Do not worry, you do not have to write all this by yourself. Follow next steps
and use inveniomanage command that generates the scaffold code for you.

The inveniomanage command

Invenio-Base installs the inveniomanage command. By default only three
subcommands are available:

$ inveniomanage --help
Usage: inveniomanage [OPTIONS] COMMAND [ARGS]...

 Command Line Interface for Invenio.

Options:
 -a, --app TEXT The application to run.
 --debug / --no-debug Enable or disable debug mode.
 --help Show this message and exit.

Commands:
 run Run development server.
 shell Run shell in the app context.

The run and shell commands only works if you have specified the
--app option or the FLASK_APP environment variable. See
Flask [http://flask.pocoo.org/docs/dev/cli/] documentation for further
information.

Listing all entrypoints of an Invenio instance

The instance entrypoints subcommand helps you list all entrypoints of your
Invenio application:

$ inveniomanage instance entrypoints

The output of the command will be in the below format:

<entrypoint_group_name>
 <entrypoint>

You can also restrict the output of the command to list all entrypoints for a
specific entrypoint group by passing the name via the -e option:

$ inveniomanage instance entrypoints -e <entrypoint_group_name>

For further details about the available options run the help command:

$ inveniomanage instance entrypoints --help
...

Migrating the application’s old secret key

The instance migrate_secret_key subcommand helps you migrate your
application’s old secret key:

$ inveniomanage instance migrate_secret_key --old-key <old_key>

The purpose of this command is to provide the administrator the capability to
change the Invenio application’s secret_key and migrate that change in all
database’s EncryptedType properties through an entrypoint group called
invenio_base.secret_key’. There you can specify your migration function that
will receive the old secret_key that can be used to decrypt the old properties
and encrypt them again with the application’s new secret_key.

You can register your migration function as shown below in your package’s
entrypoints in the setup.py:

entrypoints= {
 'invenio_base.secret_key': [
 '<entrypoint_name> = <entrypoint_function>'
]
}

Also you can see an example of use in invenio_oauthclient [https://github.com/inveniosoftware/invenio-oauthclient]
package’s setup.py.

Note

You should change your application’s secret_key in the config before calling
the migration command.

For further details about the available options run the help command:

$ inveniomanage instance migrate_secret_key --help
...

API Docs

Application and CLI factory

Invenio application factory.

	
invenio_base.app.app_loader(app, entry_points=None, modules=None)

	Run default application loader.

	Parameters

	
	entry_points – List of entry points providing to Flask extensions.

	modules – List of Flask extensions.

	
invenio_base.app.base_app(import_name, instance_path=None, static_folder=None, static_url_path='/static', template_folder='templates', instance_relative_config=True, app_class=<class 'flask.app.Flask'>)

	Invenio base application factory.

If the instance folder does not exists, it will be created.

	Parameters

	
	import_name – The name of the application package.

	env_prefix – Environment variable prefix.

	instance_path – Instance path for Flask application.

	static_folder – Static folder path.

	app_class – Flask application class.

	Returns

	Flask application instance.

	
invenio_base.app.blueprint_loader(app, entry_points=None, modules=None)

	Run default blueprint loader.

The value of any entry_point or module passed can be either an instance of
flask.Blueprint or a callable accepting a flask.Flask application
instance as a single argument and returning an instance of
flask.Blueprint.

	Parameters

	
	entry_points – List of entry points providing to Blueprints.

	modules – List of Blueprints.

	
invenio_base.app.configure_warnings()

	Configure warnings by routing warnings to the logging system.

It also unhides DeprecationWarning.

	
invenio_base.app.converter_loader(app, entry_points=None, modules=None)

	Run default converter loader.

	Parameters

	
	entry_points – List of entry points providing to Blue.

	modules – Map of coverters.

	
invenio_base.app.create_app_factory(app_name, config_loader=None, extension_entry_points=None, extensions=None, blueprint_entry_points=None, blueprints=None, converter_entry_points=None, converters=None, wsgi_factory=None, **app_kwargs)

	Create a Flask application factory.

The application factory will load Flask extensions and blueprints specified
using both entry points and directly in the arguments. Loading order of
entry points are not guaranteed and can happen in any order.

	Parameters

	
	app_name – Flask application name.

	config_loader – Callable which will be invoked on application
creation in order to load the Flask configuration. See example below.

	extension_entry_points – List of entry points, which specifies Flask
extensions that will be initialized only by passing in the Flask
application object

	extensions – List of Flask extensions that can be initialized only by
passing in the Flask application object.

	blueprint_entry_points – List of entry points, which specifies
Blueprints that will be registered on the Flask application.

	blueprints – List of Blueprints that will be registered on the
Flask application.

	converter_entry_points – List of entry points, which specifies
Werkzeug URL map converters that will be added to
app.url_map.converters.

	converters – Map of Werkzeug URL map converter classes that will
be added to app.url_map.converters.

	wsgi_factory – A callable that will be passed the Flask application
object in order to overwrite the default WSGI application (e.g. to
install DispatcherMiddleware).

	app_kwargs – Keyword arguments passed to base_app().

	Returns

	Flask application factory.

Example of a configuration loader:

def my_config_loader(app, **kwargs):
 app.config.from_module('mysite.config')
 app.config.update(**kwargs)

Note

Invenio-Config [https://pythonhosted.org/invenio-config] provides a
factory creating default configuration loader (see
invenio_config.utils.create_config_loader() [https://invenio-config.readthedocs.io/en/latest/api.html#invenio_config.utils.create_config_loader]) which is sufficient
for most cases.

Example of a WSGI factory:

def my_wsgi_factory(app):
 return DispatcherMiddleware(app.wsgi_app, {'/api': api_app})

	
invenio_base.app.create_cli(create_app=None)

	Create CLI for inveniomanage command.

	Parameters

	create_app – Flask application factory.

	Returns

	Click command group.

WSGI factory

WSGI application factory for Invenio.

	
invenio_base.wsgi.create_wsgi_factory(mounts_factories)

	Create a WSGI application factory.

Usage example:

wsgi_factory = create_wsgi_factory({'/api': create_api})

	Parameters

	mounts_factories – Dictionary of mount points per application
factory.

New in version 1.0.0.

	
invenio_base.wsgi.wsgi_proxyfix(factory=None)

	Fix REMOTE_ADDR based on X-Forwarded-For headers.

Note

You must set WSGI_PROXIES to the correct number of proxies,
otherwise you application is susceptible to malicious attacks.

New in version 1.0.0.

Signals

Signals for application creation.

	
invenio_base.signals.app_created = <blinker.base.NamedSignal object at 0x7fd000a9b590; 'app-created'>

	Signal sent when the base Flask application have been created.

Parameters:
- sender - the application factory function.
- app - the Flask application instance.

Example receiver:

def receiver(sender, app=None, **kwargs):
 # ...

	
invenio_base.signals.app_loaded = <blinker.base.NamedSignal object at 0x7fd000a9b5d0; 'app-loaded'>

	Signal sent when the Flask application have been fully loaded.

Parameters:
- sender - the application factory function.
- app - the Flask application instance.

Example receiver:

def receiver(sender, app=None, **kwargs):
 # ...

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

Types of Contributions

Report Bugs

Report bugs at https://github.com/inveniosoftware/invenio-base/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “feature”
is open to whoever wants to implement it.

Write Documentation

Invenio-Base could always use more documentation, whether as part of the
official Invenio-Base docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at
https://github.com/inveniosoftware/invenio-base/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up invenio-base for local development.

	Fork the inveniosoftware/invenio-base repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/invenio-base.git

	Install your local copy into a virtualenv. Assuming you have
virtualenvwrapper installed, this is how you set up your fork for local
development:

$ mkvirtualenv invenio-base
$ cd invenio-base/
$ pip install -e .[all]

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass tests:

$./run-tests.sh

The tests will provide you with test coverage and also check PEP8
(code style), PEP257 (documentation), flake8 as well as build the Sphinx
documentation and run doctests.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -s
 -m "component: title without verbs"
 -m "* NEW Adds your new feature."
 -m "* FIX Fixes an existing issue."
 -m "* BETTER Improves and existing feature."
 -m "* Changes something that should not be visible in release notes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests and must not decrease test coverage.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring.

	The pull request should work for Python 2.7, 3.3, 3.4 and 3.5. Check
https://travis-ci.org/inveniosoftware/invenio-base/pull_requests
and make sure that the tests pass for all supported Python versions.

Changes

Version 1.0.2 (released 2018-12-14)

Version 1.0.1 (released 2018-05-25)

	Added support for blueprint factory functions in the
invenio_base.blueprints and the invenio_base.api_blueprints entry
point groups. In addition to specifying an import path to an already created
blueprint, you can now specify an import path of a blueprint factory function
with the signature create_blueprint(app), that will create and return a
blueprint. This allows moving dynamic blueprint creation from the extension
initialization phase to the blueprint registration phase.

Version 1.0.0 (released 2018-03-23)

	Initial public release.

License

MIT License

Copyright (C) 2015-2018 CERN.

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the “Software”), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Note

In applying this license, CERN does not waive the privileges and immunities
granted to it by virtue of its status as an Intergovernmental Organization or
submit itself to any jurisdiction.

Contributors

	Alizee Pace

	Chiara Bigarella

	Dinos Kousidis

	Harris Tzovanakis

	Javier Delgado

	Jiri Kuncar

	Krzysztof Nowak

	Lars Holm Nielsen

	Leonardo Rossi

	Marco Neumann

	Paulina Lach

	Rémi Ducceschi

	Sami Hiltunen

	Sebastian Witowski

	Tibor Simko

	Yoan Blanc

	Zacharias Zacharodimos

 Python Module Index

 i

 		 	

 		
 i	

 	[image: -]
 	
 invenio_base	

 	
 	
 invenio_base.app	

 	
 	
 invenio_base.signals	

 	
 	
 invenio_base.wsgi	

Index

 A
 | B
 | C
 | I
 | W

A

 	
 	app_created (in module invenio_base.signals)

 	
 	app_loaded (in module invenio_base.signals)

 	app_loader() (in module invenio_base.app)

B

 	
 	base_app() (in module invenio_base.app)

 	
 	blueprint_loader() (in module invenio_base.app)

C

 	
 	configure_warnings() (in module invenio_base.app)

 	converter_loader() (in module invenio_base.app)

 	
 	create_app_factory() (in module invenio_base.app)

 	create_cli() (in module invenio_base.app)

 	create_wsgi_factory() (in module invenio_base.wsgi)

I

 	
 	invenio_base (module)

 	invenio_base.app (module)

 	
 	invenio_base.signals (module)

 	invenio_base.wsgi (module)

W

 	
 	wsgi_proxyfix() (in module invenio_base.wsgi)

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Invenio-Base

 		
 Installation

 		
 Usage

 		
 Quickstart

 		
 Dependencies

 		
 Configuration

 		
 Combining Applications

 		
 Running

 		
 The inveniomanage command

 		
 Listing all entrypoints of an Invenio instance

 		
 Migrating the application’s old secret key

 		
 API Docs

 		
 Application and CLI factory

 		
 WSGI factory

 		
 Signals

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Changes

 		
 License

 		
 Contributors

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

